Pontiac - Boost Turbo, supercharged, Nitrous, EFI & other Power Adders discussed here.

          
Reply
 
Thread Tools Display Modes
  #1  
Old 02-22-2023, 06:34 PM
Tom Vaught's Avatar
Tom Vaught Tom Vaught is offline
Boost Engineer
 
Join Date: Dec 2001
Location: The United States of America
Posts: 31,294
Default GOING THRU SOME OF MY OLD BOOST FILES

This question seems to come up time and time again. Is it better to increase the static CR or boost pressure. There are a couple reasons why supercharged or turbocharged engines run lower static compression ratios. A static CR in the range of 8-9 is very common. Here are a couple considerations.

Consideration #1
Heat from compression by a supercharger or turbo can be removed (for the most part) through use of an intercooler. Heat from compression within the cylinder cannot. Also, the cylinder pressure at the end of the compression stroke (prior to ignition) goes up exponentially with an increase in static compression ratio, versus a linear increase with boost pressure. Therefore, increasing the static CR is going to unavoidably push you closer to the knock limit for a given fuel. In other words, the octane requirement goes up more by increasing the static CR than it does by increasing boost.

For example, increasing the static CR from 8.5 to 9.5 increases the temperature within the cylinder at the end of the compression stroke (but before ignition) by ~63°F, (assuming IAT2 = 130°F and ideal adiabatic compression with γ = Cp/Cv = 1.4. I won’t bore anyone with equations. The situation doesn’t change much even if IAT2 were only, say, 100°F. In that case, the increase in temp at the end of the compression stroke goes up by ~60°F for the same increase in static CR). Also, the pressure at the end of the compression stroke (before ignition) goes up by ~97 psi from 574 psi to 671 psi, assuming atmospheric and boost pressures of 14.7 and 14 psi, respectively. On the other hand, increasing the boost pressure from 14 to 15 psi increases the outlet temp of the compressor by only ~11°F, assuming AE=60% and IAT1 = 90°F. And by further assuming an intercooler efficiency of 80%, the increase in IAT2 is only ~2°F. Hence, the increase in temp at the end of the compression stroke will hardly change at all. Also, the increase in cylinder pressure at the end of the compression stroke only goes up by ~18 psi (from 516 to 534 psi) with this increase in boost pressure.

So summarizing the effects of increased temp and pressure at the end of the compression stroke for the two cases:
Increased CR from 8.5 to 9.5: ΔT = ~63°F and ΔP = ~97 psi
Increased boost from 14 to 15 psi: ΔT = ~2.4°F and ΔP = ~18 psi

A higher temp and pressure increase the likelihood of deadly preignition for a given octane fuel. And for those astute observers that know the physics I’ve applied, yes, although I’ve idealized things to keep it simple, (by not including effects such as heat loss thru the cylinder walls during the compression stroke or ignition and valve timing in the calculations), I’m sure they’ll also recognize that this doesn’t change the conclusion.

Consideration #2
Power is increased by two completely different mechanisms for the two approaches. Increasing the static compression ratio increases power via an increase in thermal-conversion efficiency. Increasing boost pressure increases power via an increase in mass-air flow rate. There’s less gain in thermal-conversion efficiency (and hence power) via an increased static CR compared to the power gain by increasing the mass-air flow rate via an increase in boost pressure. For example, increasing the static CR from 8.5 to 9.5 results in an increase in thermal-conversion efficiency (for an ideal Otto cycle) of about 3.2%. On the other hand, increasing the boost pressure from just 14 psi to 15 psi, increases the mass-air flow rate by about 3.5%. If boost pressure is increased by 2 psi, (from 14 to 16 psi), the increase in mass-air flow rate will now be more than twice that compared to the increase in thermal-conversion efficiency, (~7% vs ~3.2%), and ΔT and ΔP still won’t be as great as they are when increasing the static CR from 8.5 to 9.5. Therefore, not only can it be “safer” from the knock point of view, but a little more power is gained as well, (relatively speaking that is).

In conclusion, I would contend that for a forced-induction application, that low compression is in general, the better way to

Maybe our Math Guy can post up if he agrees with the above info.

Tom V.

__________________
"Engineers do stuff for reasons" Tom Vaught

Despite small distractions, there are those who will go Forward, Learning, Sharing Knowledge, Doing what they can to help others move forward.
The Following 2 Users Say Thank You to Tom Vaught For This Useful Post:
  #2  
Old 02-24-2023, 03:38 PM
R 70 Judge's Avatar
R 70 Judge R 70 Judge is offline
Ultimate Warrior
 
Join Date: Mar 2002
Location: San Diego, CA
Posts: 2,691
Default

Interesting read. Thanks

__________________
James
1970 Trans Am

Spotts Built 484" IA2, Highports, EFI Northwind
Terminator X sequential EFI fabrication and suspension by
https://www.funkhouserracecars.com/
Reply

Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off

Forum Jump


All times are GMT -4. The time now is 09:20 PM.

 

About Us

The PY Online Forums is the largest online gathering of Pontiac enthusiasts anywhere in the world. Founded in 1991, it was also the first online forum for people to gather and talk about their Pontiacs. Since then, it has become the mecca of Pontiac technical data and knowledge that no other place can surpass.

 




Copyright © 2017